Vector competence of Mexican and Honduran mosquitoes (Diptera: Culicidae) for enzootic (IE) and epizootic (IC) strains of Venezuelan equine encephalomyelitis virus.
نویسندگان
چکیده
Experimental studies evaluated the vector competence of Ochlerotatus taeniorhynchus (Wiedemann), Culex cancer Theobald, Culex pseudes (Dyar and Knab), Culex taeniopus Dyar and Knab, and a Culex (Culex) species, probably Culex quinquefasciatus Say, and Culex nigripalpus Theobald from Chiapas, Mexico, and Tocoa, Honduras, for epizootic (IC) and enzootic (IE) strains of Venezuelan equine encephalomyelitis (VEE) virus. Culex pseudes was highly susceptible to infection with both the IC and IE strains of VEE (infection rates >78%). Patterns of susceptibility to VEE were similar for Oc. taeniorhynchus collected in Mexico and Honduras. Although Oc. taeniorhynchus was highly susceptible to the epizootic IC strains (infection rates > or = 95%, n = 190), this species was less susceptible to the enzootic IE strain (infection rates < or = 35%, n = 233). The Culex (Culex) species were refractory to both subtypes of VEE, and none of 166 contained evidence of a disseminated infection. Virus-exposed Cx. pseudes that refed on susceptible hamsters readily transmitted virus, confirming that this species was an efficient vector of VEE. Although Oc. taeniorhynchus that fed on hamsters infected with the epizootic IC strain transmitted VEE efficiently, only one of six of those with a disseminated infection with the enzootic IE virus that fed on hamsters transmitted virus by bite. These data indicate that Cx. pseudes is an efficient laboratory vector of both epizootic and enzootic strains of VEE and that Oc. taeniorhynchus could be an important vector of epizootic subtypes of VEE.
منابع مشابه
Potential for Central American mosquitoes to transmit epizootic and enzootic strains of Venezuelan equine encephalitis virus.
Experimental studies were undertaken to compare the vector competence of Culex (Melanoconion) taeniopus Dyar and Knab, Culex (Melanoconion) ocossa Dyar and Knab, and Psorophora confinnis (Lynch Arribalzalga) from Central America for epizootic (IAB) and enzootic (IE) strains of Venezuelan equine encephalitis (VEE) virus. Virus infection and dissemination rates were significantly higher in Cx. ta...
متن کاملVenezuelan equine encephalitis emergence: enhanced vector infection from a single amino acid substitution in the envelope glycoprotein.
In 1993 and 1996, subtype IE Venezuelan equine encephalitis (VEE) virus caused epizootics in the Mexican states of Chiapas and Oaxaca. Previously, only subtype IAB and IC VEE virus strains had been associated with major outbreaks of equine and human disease. The IAB and IC epizootics are believed to emerge via adaptation of enzootic (sylvatic, equine-avirulent) strains for high titer equine vir...
متن کاملGenetic and Anatomic Determinants of Enzootic Venezuelan Equine Encephalitis Virus Infection of Culex (Melanoconion) taeniopus
Venezuelan equine encephalitis (VEE) is a re-emerging, mosquito-borne viral disease with the potential to cause fatal encephalitis in both humans and equids. Recently, detection of endemic VEE caused by enzootic strains has escalated in Mexico, Peru, Bolivia, Colombia and Ecuador, emphasizing the importance of understanding the enzootic transmission cycle of the etiologic agent, VEE virus (VEEV...
متن کاملVector infection determinants of Venezuelan equine encephalitis virus reside within the E2 envelope glycoprotein.
Epizootic subtype IAB and IC Venezuelan equine encephalitis viruses (VEEV) readily infect the epizootic mosquito vector Aedes taeniorhynchus. The inability of enzootic subtype IE viruses to infect this mosquito species provides a model system for the identification of natural viral determinants of vector infectivity. To map mosquito infection determinants, reciprocal chimeric viruses generated ...
متن کاملGlycosaminoglycan binding properties of natural venezuelan equine encephalitis virus isolates.
Equine-virulent, epidemic/epizootic strains of Venezuelan equine encephalitis (VEE) virus (VEEV) arise via mutation of progenitor enzootic strains that replicate poorly in equines. Sequencing studies have implicated positively charged amino acids on the surface of the E2 envelope glycoprotein in the acquisition of equine virulence and viremia potential, suggesting that changes in binding to cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of medical entomology
دوره 40 3 شماره
صفحات -
تاریخ انتشار 2003